Course Outcomes:

S1	Semester	Course Title	Course Outcomes
1	I	Basic Circuit Theory and Network Analysis	Student will be able to: i) understand the basic circuit elements, circuit variables and Kirchoff' s laws. ii) solve problems using mesh and node analysis and apply network theorem to analyze the various electrical circuits iii) analyse circuits in the phasor form. iv) analyse circuits in Laplace domain v) analyze the two port networks by determining the various parameters.
2	Ι	Mathematics Foundation for Electronics	<pre>Student will be able to: i) Solve higher differential equation and apply the concept of differential equation to real world problems ii) understand the theoretical concept of Matrix Algebra and Apply the principles of Matrix Algebra to solve various problems iiii) analyze the nature of sequence and series. iv) understand about complex numbers and functions. v) gain knowledge of various singularities and series expansions</pre>
3	II	Semiconductor Devices	 Student will be able to i) define and understand the concepts of semiconductor physics. ii) explain the structure, creation of electric field and working of PN junction diodes. iii) understand different modes of operation and the various current components in BJTs iv) analyze energy band diagram of PN junction diodes, BJTs, metal-semiconductor junctions and MOS capacitors.
4	II	Applied Physics	Student will be able to i) analyse the failures of classical physics in microscopic situation and need of quantum physics ii) Acquire the theoretical information about matter in terms of quantum physics iii) learn Einstein's A, B coefficient and predict the wavelength domain of Lasing action iv) learn requirement of Miller indices for describing crystallographic planes v) understand the basic principles of thermodynamics, heat and work transfer.

			Student will be able to
5	III	Electronic Circuits	 i) understand the working of analog circuits like rectifiers, clippers, clampers regulators etc. ii) understand BJT with different configurations and its small signal analysis iii) understand feedback amplifiers& Oscillators iv) understand power amplifiers& switching circuits v) understand working of amplifier using MOSFET & its small signal analysis
6	III	Digital Electronics and VHDL	Student will be able to understand basic principles of digital circuits, different number systems and perform radix conversions derive and analyze logic expressions and circuits using Boolean laws and K-map design and analyze combinational circuits like adders, Comparators, multiplexers, Encoders, DeMUX, ROM etc. analyse sequential circuits and design various counter circuits understand the difference between different shift registers like Serial in serial out, parallel in parallel out etc. have knowledge on Programmable Logic devices (PLDs) and their usage. Simulate and implement combinational and sequential circuits using VHDL systems
7	III	C Programming and Data Structures	Student will be able to i) Understand the basic terminology, write, compile and debug programs in computer programming. ii) Apply different types of control structures and arrays in a computer programming. iii) Develop programs that make use of concepts such as strings and pointers in C language. iv) Compare parameter passing techniques, structures and unions in computer programming. v). Analyze file operations, searching and sorting methods.
8	III	SEC-1: Programming with MATLAB	 Student will be able to 1. use MATLAB for solving engineering problems. 2. analyze circuit operation & characteristics from simulation results. 3. generate different plots using MATLAB.

			Student will be able to
			1.define significance of Op Amps and its
			importance along with its DC and AC
			characteristics.
			2. use OP Amp as Summer, Subtractor,
_			Multiplier and Divider.
9	IV	Operational Amplifiers	3. Analyze the linear and non-linear
		and its Applications	applications, waveform generators and
			sinusoidal oscillators using Operational
			Amplifier.
			4. Design of Butterworth filters using
			with theory and applications
			Student will be able to
			1 Understand about various types of signals
			and systems classify them analyze them and
			nerform various operations on them
			2. Understand use of transforms in analysis
			of signals and system in continuous and
			discrete time domain.
10	IV	Signals and Systems	3. Observe the effect of various properties
			and operations of signals and systems.
			4. Evaluate the time and frequency response
			of Continuous and Discrete time systems which
			are useful to understand the behaviour of
			electronic circuits and communication system.
			Student will be able to
			1. Understand and estimate errors in a
			measurement system.
			2. understand analog and digital measurement
	IV	Electronic Instrumentation	instruments such as ammeter, voltmeter,
11			ohmmeter etc.
			3. Understand the operation of the different
			types of UROS.
			4. Understand the basic principles of
			5. Estimate accurately the values of P. L. and
			C with suitable bridges
12	TV	SEC-2: Design and	
12	1,	Fabrication of Printed	
		Circuit Boards	
			Student will be able to
13			1. know the history and need of 8085
			microprocessors with its internal
			architecture and various addressing modes.
			2. analyze various instructions and programs.
	V	Microprocessors and	3. apply the knowledge for communicating
		Microcontrollers	various real time applications through
			interfacing techniques.
			4: design various systems based on
			microprocessors and microcontroller.
1	1		

			Student will be able to
			1 understand and interpret the physical
			1. Understand and interpret the physical
			meanings of gradient, divergence
			and curl, vector calculus and orthogonal
			coordinates.
			2. Understand the principles of
			Electrostatics and magnetostatics using
			Maxwell' s Equation.
			3. understand steady fields and time varying
14	V	Electromagnetics	fields and correlate the Poynting vector and
			Povnting theorem.
			4. understand the wave equations, application
			of F M theory in transmission line, wave
			guide concent
			5 Observe the change in Maxwell' s equations
			for time verying fields and also observe the
			for time varying fields and also observe the
			condition at the boundary surfaces.
			b. Get knowledge on propagation of EM wave in
			different media.
15	V	Discipline Specific	
		Elective-1	
16	V	Discipline Specific	
		Elective-2	
			Student will be able to
			1. understand the building blocks of
			communication system.
			2. Use of different modulation and
			demodulation techniques used in analog
			communication.
17	VI	Communication	3. Understand different band-pass modulation
		Electronics	schemes
			4. Understand different base-band modulation
			schemes
			5 Understand spread spectrum techniques and
			multiple access mechanisms
			multiple decess meenanisms
18	VT	Photonics	Student will be able to
10		110001105	
19	VI	Discipline Specific	
		Elective-3	
20	VI	Discipline Specific	
		Flective-4	